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Abstract. Some enumerative formulae are presented for planar diagrams with quartic 
vertices-for skeleton diagrams, one-particle irreducible skeletons, and diagrams without 
Hartree-type insertions. 

1. Introduction 

Planar field theory was first introduced in the context of S U ( N )  quantum chromo- 
dynamics (QCD) where it was shown that, when the coupling is suitably scaled with N, 
only planar Feynman diagrams contribute to any Green function in the limit N + W  
(t’Hooft 1974). Besides its significance to QCD, a planar approximation may be a 
useful one in several problems in field theory and many-body theory when the more 
usual type of approximations, like the random phase approximation (RPA), are 
inadequate (Wegner 1981). 

Despite the need for a better approximation than the RPA in the study of strongly 
interacting systems and even though the planar limit seems like an interesting candidate 
for such an approximation, no non-trivial model for a many-body system has yet been 
solved in the planar approximation. Since the planar approximation involves a very 
large set of Feynman diagrams, it is likely that solving a model in this approximation 
would in,volve complicated self-consistent equations which may be hard to obtain by 
perturbing in the bare interaction. However, whether a model is solvable in the planar 
approximation may be examined by studying the S matrix at small orders in the bare 
interaction. This suggests that it might be useful to study one-particle irreducible Green 
functions at various orders in the bare interaction and explore general features of the 
planar approximation (Wegner 1981). When carrying out such a plan, however, it is 
useful to know the number of planar skeleton and one-particle irreducible ( I -PI)  

diagrams at various orders in the bare interaction. (Diagrams which do not have any 
self-energy insertion are called skeletons; those that do not break into two or more 
disconnected parts when an internal line is cut are called one-particle irreducible.) 
Though an explicit enumerative formula for connected planar diagrams with quartic 
and cubic vertices, respectively, was obtained by Brezin et a1 (1978), this formula for 
connected diagrams is not very useful when studying skeleton and 1-PI diagrams beyond 
the first few orders in the bare interaction because it becomes rather tedious to draw 
all connected diagrams and separate out skeleton and I-PI  diagrams from these. For 
example, for a model of N x N complex matrices with quartic self interaction, the 
number of connected diagrams and of I-PI skeletons contributing to the 4-point function 
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at seventh order in the interaction is 3’ x 15 x 14 x 13 and 1938, respectively. The 
purpose of this paper is to present explicit enumerative formulae for various sorts of 
planar diagrams with quartic vertices-for skeleton diagrams, diagrams without one- 
loop Hartree type insertions, one-particle irreducible skeletons, etc (§§ 2-6). 

In combinatorial theory, it is sometimes possible to obtain solution to an enumera- 
tive problem from known solution of a related problem by using general theorems like 
Lagrange theorem and Polya’s enumeration theorem (Harary and Palmer 1973). 
Indeed, the formulae for various sorts of planar diagrams reported in this paper are 
obtained from the generating function for connected diagrams (Brezin et a1 1978) by 
a simple application of Lagrange theorem. The synthesis achieved thereby, between 
quantum field theory techniques in graphical enumeration pioneered by Brezin et a1 
(1978, Bessis et a1 1980) and standard theorems of combinatorial theory, may prove 
very useful in solving hitherto unsolved combinatorial problems. For example, the 
problem of enumerating I -P I  skeletons in a planar theory with quartic self interaction 
is similar to that of enumerating ‘rooted’ ‘strong’ quadrangulations of the disc (Koplik 
et a1 1977). It seems that an explicit enumerative formula for this problem has not 
been published (Tutte 1973) though several other results on quadrangulations with 
various symmetries have been (Brown 1965, Mullin and Schellenberg 1968). However, 
the formulae reported below (21) for the number of I-PI skeletons contributing to 6-, 
8-, 10-point functions also give the number of ways of dissecting into quadrangles a 
polygonal disc with six, eight and ten sides, respectively, and testify to the usefulness 
of the synthesis mentioned above. Thus the enumerative formulae for various sorts of 
planar diagrams reported in this paper may, on one hand, provide useful checks on 
any perturbative calculation of I-PI  functions in the planar approximation; on the other 
hand, the method used in obtaining these formulae may be useful in solving other 
unsolved combinatorial problems. 

Besides these combinatorial aspects, the relation obtained in § 5 below, showing 
that the connected planar diagrams to the 2-point function at any given order in the 
interaction are equinumerous with those contributing to the 4-point function at one 
lower order in the interaction after one-loop Hartree type insertions have been subtrac- 
ted from each set, brings out a very important property of the planar approximation. 
This relation tells that, diagram by diagram, the planar approximation satisfies the 
defining (Dyson) equation for the 2-point function. This property suggests that the 
planar approximation satisfies the basic conservation laws and also gives confidence 
in the ‘goodness’ of this approximation. 

2. Connected diagrams 

It is now known that only planar diagrams contribute in the N + CO limit of a theory 
defined by the Lagrangian (Brezin et a1 1978). 

L = T r d p M  dpM++Tr  M M + + ( g / N )  Tr(MM+MM+) (1) 

where the field variable M ( x )  is a complex N x N matrix. Only this case will be 
discussed in this paper; results for other cases-e.g. when M is a symmetric, or a 
complex Hermitian matrix-can be obtained by rescaling the coupling g (Brezin et a1 
1978). The combinatorial problem one faces when attempting to solve the planar limit 
by doing perturbation theory in g is this: what is the number of connected planar 
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diagrams contributing to a 2p-point function, G2p at any order in g ?  The rather 
ingenious method of Brezin er a1 consists in solving the generating functional for Green 
functions in zero dimensions, i.e. when the bare one-particle propagator corresponding 
to ( 1 )  is set equal to unity. Their result is 

GZp = AP( - 1)'( 1 - ~ Z ) ~ Z ~ - ' [ ~ Z  - ( 1  + 3z)pl (2a) 

where 

A , = l  

O b )  Ap+i = (-4Y 
(P+ 1 ) ! ( 3 ~ +  1) p / 2 s - q s p  

z = f ( l -  a 2 ) ,  a 2  = 1 - 3ga4.  (2c) 

(-1y2-P (P+4)! 
( 2 4  - P I ! (  P - 0 

The expression on the right-hand side of (2a)  may be expanded in positive powers of 
g and the coefficient of g" in this expansion gives the number of connected diagrams 
contributing at nth order in g.  A formula for the number of connected diagrams 
reported by Brezin er al is 

3. Skeleton diagrams 

A formula for the number of skeleton diagrams may be obtained from the expression 
(2a) for connected diagrams. In order to derive such a formula, it is useful to recall 
the following properties of the diagrammatic perturbation series: 

(i)  It follows from ( 3 )  that the first non-vanishing contribution to G2p is at order 
g p - ' .  These diagrams have 3p - 2 lines. When considering skeleton diagrams, each 
line in a diagram stands for the full one-particle Green function, G2. Thus the first 
term, when expanding GZp in skeleton diagrams, must be of the form gP-'G23P-2. 

(i i)  Adding an interaction vertex to any connected diagram adds two new internal 
lines so that higher order terms in an expansion in skeleton diagrams are of the form 
g ~ - ~ ~ 2 3 ~ - 2  (gG2') ". 

Since skeleton diagrams generate all the connected diagrams, (i)  and (ii)  suggest 
that G2p/(gP- 'G2P-2)  may be written as a function of gG2'. This function has an 
expansion in positive powers of gG22 such that the coefficient of (gGz2)" gives the 
number of skeleton diagrams contributing at ( p  - 1 + n)th order in g to 2p-point 
function. This may be verified, with some effort, for the first few orders in g by 
expanding the right-hand side of (2a) in powers of g and rearranging the series to 
match those for gP-'G23P-2(gG22)n. Thus an explicit formula for the number of skeleton 
diagrams will be obtained if the coefficients of (gG22)" in the expansion of 
G2p/(gp-1G23P-2)  are known. The problem of obtaining these coefficients is that of 
expanding a function of a variable in powers of another function of the same variable. 
This latter problem has a well known solution in Lagrange theorem (Whittaker and 
Watson 1927). Let 

f ,(z) G2p/(gP-'G23P-2)  = Ap(-1)"+'(l + z ) - ~ ' + ~  [P + (3p -2121 (4a) 

y ,  ( z )  = gG2' = z (  1 + z ) ~ .  (4b) 
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y,(z) has a simple zero at 

z = o  

and fl(z) is analytic in a small neighbourhood around this point. Thus Lagrange 
theorem is applicable and gives the expansion 

X[( 1 + 3z)( 1 + z)-3p+1-2" L o .  

Using 

1 (3p+3n -4)!3p 
-- I z = 0  =-J-l)"-l (3p + 2n - 2)! 

d"-l [( 1 + 3z)( 1 + z ) - ~ ~ - ~ ~ ~ ~  
n !  dz"-' 

and recalling that the coefficient of yy gives the number of skeleton diagrams, K2p ,n- l+p  
at order gn-Itp, the following formula is obtained for KZp 

O0 ( -l)kgk(3p - 2)(3p - 3)(3k - 1) ! 
( k + l - p ) ! ( p + f k ) !  K 2 p = P A ,  c 

k = p - 1  

A, is given in (2c);  or PA, may be independently determined by noting that at the 
first non-vanishing contribution to a 2p-point function, the number of connected 
diagrams is equal to the number of skeleton diagrams, and that this number is PA,: 

(3p-3)! 
P A P =  ( p  - 1)!(2p - l ) ! .  

Substituting (7) in (6), the formula for E Z p  is 

(7) 

which, for p = 2, gives 

E4=-g+2g2-6g3+22g4-91g5+408g6- 1938g'. . . . (9) 

This expansion for ff4 agrees with the few terms given after (4.13) in Koplik et a1 (1977). 

4. Skeleton diagrams without vertex insertions 

Skeleton diagrams defined in the introduction and enumerated in $ 3  may be reduced 
further by shrinking all insertions around a vertex to a point. All connected diagrams 
are now represented by a small set in which each vertex stands for the full I-PI 
two-particle propagator and each line for the full one-particle propagator. The diagrams 
in this set may be enumerated following the method outlined above, i.e. by expanding 
GZp/(r4P-1G23P-2) in powers of r4G2' where 

r4 = - G4/ GZ4 

= ~ ( 1 + 2 ~ ) ( 1 - 3 ~ ) - ~ ( 1 + ~ ) - ~  (10) 
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is the I-PI irreducible two-particle propagator. Let 

f 2 ( z )  = G2p/(r4P-'G23P-2 ) 

= AP(-1)'(l +2~) '- ' (1+ z ) ' - ~ [ ~ z  - (1 + 3 ~ ) p ]  

y 2 ( z )  r4G22 
=z(l+2z)(1+z)-2,  

then by Lagrange's theorem 

( Y 2 ( Z ) ) "  d"-' 
f2( Z )  = (-  l)'+'pAp + AP( -1)'( p - 2)( p - 1) C - - n !  dz"-' 

This yields the following formula for the number of diagrams, KZp,  without self-energy 
and vertex insertions 

5. Diagrams without Hartree-type insertions 

Another interesting subset of diagrams is obtained when one-loop, Hartree-type 
insertions are excluded. Hartree-type insertions are easily summed by redefining the 
mass term in the one-particle propagator and, at any order in the interaction, the 
number of remaining diagrams is much smaller than the total number of connected 
diagrams. Moreover, when Hartree-type insertions are excluded in the planar approxi- 
mation, the number of diagrams to one-particle Green function at any order ( g " )  in 
the interaction is equal to the number of diagrams to two-particle Green function at 
one lower order ( g " - ' )  in the interaction. This may be verified by studying the first 
few terms in the series for connected diagrams (given bv (31). An algebraic exuression 
for this statement is the following: G i 5 ( G 2  - GH) and g G i 4 G 4  are given by the same 
function of z, where 

GH E I / (  1 f2gG2) 

= (1 - 3 z)( 1 - z + 227-1 

is the one-particle Green function in the Hartree approximation. (Factors of GH5 and 
GL4 account for the different number of lines in diagrams for one- and two-particle 
Green functions, respectively.) Thus 

so that -gG4 and GK'( G, - GH) have equal coefficients when expanded in powers of 
any function of z. 

A general formula for the number of diagrams remaining after the Hartree-type 
insertions have been subtracted may be obtained following the method used for skeleton 
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diagrams. Now 

f3(z) = G 2 p / g P - 1 G ~ P - 2 ,  P'l 
= A,( -1)'+'( 1 - z + 2 ~ ~ ) ~ ~ - ~ [  p + (3p - 2 ) ~ ]  

is expanded in powers of 

Using Lagrange's theorem, f3( z)  has the expansion 

x {( 1 - + 2z2)3~-3+2n (3 z + 1 ) [ 4p - 2 z + ( 1 - p ) ] ) 

and the coefficient of (y3(z))" in this expansion gives the number of diagrams without 
Hartree-type insertions, at order gP-'+". This gives the somewhat complicated 
formula 

k2, = ( -l)p+lpApgp-' + AP(-1)'+'(3p - 2) 
a: g p - l + n  (-1),,-'2,, 3 ~ - 3 + 2 n  (3p -3+2n)!  

n = l  n r = O  2-'-3 (3p - 3 + 2n - r ) !  

4(1 -P) - 2(1 +P) 

12p -6 + 
( n  - 3 - r)! (2r - n + 3)! 

For p = 2, the coefficients are 

k4 = -g + 2g2 - log3 + 42g4 - 209g5 + 1066g6 - 5726g7 + . . . . 

6. One-particle irreducible ( I-PI) diagrams 

One technique for enumerating I-PI skeletons is to formulate and solve an algebraic 
equation for a (combinatorial) generating function. Though such an equation was 
formulated (Koplik et a1 1977), an explicit solution could not be constructed. An 
alternative approach is to use the defining equations which give the I -PI  functions as 
combinations of connected Green functions. For example, 
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In general 

which is the solution, obtained by Lagrange's theorem, of the defining equation 
(equation (40) of Brezin er al )  

03 

+( j )  = 1 + G Z p j Z P  
j = 1  

x = j - ' (  $ ( j )  - I) .  

From (18) and (2), r2p is known as a function of z: 

T6(z)= z3(l  - 3 ~ ) - ~ ( 1 + ~ ) - ' ( 2 + 5 z )  

r&)= - ~ ~ ( ( 1 - 3 ~ ) - ~ ( 1 + ~ ) - ~ ~ ( 2 - 1 4 ~ ~ )  (20) 

rlO(z) = z5(  1 -3~) - ' (  1 + ~ ) - ~ ~ ( 2 - 9 ~ + 2 4 ~ ~ - 4 2 ~ ~ ) .  

The first contribution to T.r is at order g p  and the corresponding diagrams have p 
lines. Thus, formulae for the number of I-PI  skeletons, T,, and for I-PI  diagrams 
without Hartree-type insertions, F2, may be obtained by expanding rZpl( g P G ; )  in 
powers of y , ( z )  and r 2 , / ( g P G & )  in powers of y 3 ( z ) ,  respectively. Some formulae for 
I-PI  skeletons obtained by using Lagrange theorem to expand functions defined in (20) 
are: 

It should be possible to generalise these formulae to arbitrary p .  Any such generalisation 
may be verified by noting that the number of diagrams to T,, at orders g p  and gp+' 
is 2 and p(2p - I), respectively. 

OPI diagrams without Hartree-type insertions may also be enumerated by methods 
outlined in § 5. Explicit formulae for this case are not given here. In fact, almost all 
relevant subsets of connected diagrams may be enumerated by using these methods. 
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